Thermochimica Acta, 5 (1972) 5969 59
(C; Elscvier Scientific Publishing Company, Amsterdam — Printed in Belgium

DETERMINATION OF KINETIC PARAMETERS FOR THE THERMAL
DEGRADATION OF POLYMERS BY THE QUASILINEARIZATION
TECHNIQUE

N. W. BURNINGHAM®* and J. D. SEADER
Universizy of Utah, Salt Lake City, Urah 84112 (U. S. A.)
(Received March 22nd, 1972)

ABSTRACT

The thermal degradation of polymers is explored generally by the experimental
technique of thermogravimetry (TG). Existing mathematical methods for processing
dynamic TG data to obtain kinetic parameters for non-linear models require data
obtained at a constant rate of temperature rise and employ one or more graphical
techniques, which are time-consuming and lead to some inaccuracy. A recently
developed numercial approach to the determination of kinetic parameters which avoids
the forementioned problems and provides a rapid, flexible, systematic, and accurate
technique is the Bellman-Kalaba method of quasilinearization.

Their general technique is extended and applied to TG data. The method presen-
ted utilizes the experimental thermogram(s) directly and selects the kinetic parameters
by a least-squares-optimization procedure to best fit the data. The calculations are
conveniently carried out on a digital computer. The technique has been applied to
data on the thermal degradation of high-temperature polymers including polypheny-
Iene, polyimide and polvquinoxaline.

INTRODUCTION

In an attempt to quantitatively describe the kinetics of thermal decomposition
of polymeric materials, a number of laboratory techniques have been employed with
some success. Of these, thermogravimetry (TG) probably has been the most widely
used experimental tool. The objectives of TG experimentation are the generation of
thermograms from which a kinetic model can be formulated which describes the
thermal decomposition. TG data are also used in formulating and verifying postulated
mechanisms of pyrolysis.

The mathematical analysis of experimental TG data for the purpose of deter-
mining the Kinetic parameters of a suitable reaction-rate equation has been the subject
of many papers and review articles!™*. In general, commonly used methods require
data obtained from a constant rate of temperature rise, and employ one or more
graphical techniques for the determination of kinetic parameters. A recently developed

*Currently with Eastman Kodak Company, Rochester, New York.
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numerical method, which avoids these problems and provides a systematic approach
to the determination of kinetic constants, is the quasilinearization technique of
Bellman and Kalaba®. This method utilizes experimental data points directly, and
selects kinetic parameters by a least-squares-optimization procedure to best fit the
data. The method is iterative and requires an initial assumption of the values of the
constants. The lack of guarantee of convergence is the primary difficulty with the
approach.

Nevertheless, quasilinearization is a powerful analytical tool which offers three
significant advantages over most of the presently employed techniques for analysis
of TG data: (1) It is not necessary to maintain a constant-rate temperature rise during
the experiment. A completely flexible temmperature history, including periods of dif-
fering rates of temperature rise and even isothermal segments, can be successfully
handled. The increased analytical flexibility greatly extends the types of experimenta-
tion possible. (2) Multiple experimental runs may be combined in a single data analysis
if desired. That is, similar experimental thermograms for a given material may be
ccllectively analyzed to vield a single set of optimized kinetic parameters. (3) Inac-
curate data handling procedures such as graphical data analysis and slope measure-
ments are completeiy avoided.

DEVELOPMENT OF THE QUASILINEARIZATION METHOD

In applying guasilinearization to TG data, a power law rate function of the
following type is usually assumed.

_1ldew_, [w—w,:r 1

w, dt 17208
where wry = initial weight of polymer, uw, = final weight of residue after complete
degradation, ur = instantaneous weight of polvmer-residue material during the degra-

dation process, ¢t = time, and n = kinetic order of the degradation reaction.
Egn. (1) may be written

—é—W= k w* )
de

where A = specific rate constant and W = (uw—u)/1c4. The rate constant & is assumed
to depend on the absolute temperature according to the Arrhenius law

k= Ae ERT ©)

where 4 = pre-exponential factor, £ = activation energy, R = universal gas constant,
and T = absolute temperature.

The problem of determining the kinetic constants 4, E, and » in Eqn. (2) is
transformed to the estimation of the initial conditicns for a system of time-dependent
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differential equations. This is done by assuming that the constants are functions of
time such that the following equations are satisfied.

ddn = — Ae FRT W™ W (0) = 1 —w,jiw,; 1C)
t
A _ 0, 4(0) = 4o; O
dt
dt
0, n(0) = no; @
dt
dT
——=p, T(0) = Tp; @®
dt

where p is a known function of time. The latter equation is equivalent to having

T=6®.TO =T,

The intent is that all quantities in the equations are functions of time and that the
unknowns appear as initial conditions. Eqns. (4)«(7) are linearized by converting them
into sequences which, with reasonable initial assumptions will rapidly converge to the
best values of the kinetic parameters. Thus, if

Y o fW, 4,E, n) )
dt
then .
si+ 1 ; A ) H . i
LA f(W', A, E,, n) + a—f__ (Wi —whH + = of (A7 —-A) +
dr oW’ dA
aé (E'—E) + f -(n"*! —n’) + ignored higher-order terms  (10)

where the 7 superscripts indicate the particular iteration.
in expanded form, Eqn. (10) becomes

dwri‘i‘ 1
de
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The jterative procedure is initiated by assuming values of 4°, £°, and n° and
solving Eqn. (4), by the Runge-Kutta numerical procedure, for W>(z). Setting i =0,
the linear differential Eqns. (11)(14) are solved for W'(r), A!, E!, and n' by the
procedure of forming a particular and homogeneous solution.

The solution of Eqn. (11) can now be represented in the form

Wil = pT T BT (e RS () 1o RS () (15)
where :z‘l *1 are constants to be determined. Thus,
dp'~!
dr

- [Ai e—E‘iRT "l' (;Vi)n"—l (pf+ T ””.) +

w4 e-EVRT<— er)(—s") + AT e EYRT (Wit In (W")(—n")] (16)

and p**! (0) = W/(0), also
dn!
dr

_ — [Ai e—E‘/RT ni("’u’)l‘—l (hl'l§ l) e (';,-l.)n‘ e—E":IRT (Al'+ l) N
Wy A e‘E‘f"”<—~ %.) (EFN) + A e BT (WY In (w")(n"“)] (17

The foliowing convenient values of initial conditions are chosen: h{*! (0)=0;
A @) =1: E7" (0)=0:and n**! (0)=0.

Similarly,
dhf’.+l i _—EURT & siyni—1 i=1 ;iznt —EYRT i+1
il A e ERT LT T (T Yy + (W)Y e (A Y+
t
Wy~ 4 e‘f‘f'"(— Q—IT) (EF* YY) + A" e BRT (i 1n (Wi (n'F ')] (18)

with 2571 (0)=0; 4**' (0)=0; E*** (0)=1;and n'*! (0)=0.
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Also
i+1 ) . . g sy il o Fi Y
dl;-" = — [Ai e  EURT pi ("L (Bt Yy + (Wi e EVRT (4 ) +
4
(‘Vi)n' Ai e_EfIRT(_ _RI_'I.) (Ei+ l) + Ai e—El!RT (l’Vi)"i In (Wq‘) ("i+ l)] (19)

with A1 (0)=0; A" (0)=0; E*' (0)=0; n**! (0)=1.
With i =0, Egns. (16), (17), (18), and (19) may be solved by the Runge-Kutta 4th-order
method for p'(?), hi(t), A1), and A}(f). The constants «;” ' are determined for each
iteration such that the objective function, @, is minimized.

2

k
Z [WH (; N—W;, DATA:l (20)
j=1

where W**!(t;) are the computed points and W;,paya are the correspondingdata
points for the particular times.
For i =0, the objective function becomes,

o
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For a minimum Q,

= 0, (22)

or

[p' (1) + ey by (1) + 23 b2 (1)) + 23 3 (1) — W paral B1 (1) | = 0 (23)
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Eqns. (23), (24), and (25) are solved simultaneously for «}, «}, and «3 using experi-
mental values of W, pata at f;, and the computed p', hj, k3, A} at the (k)t; values.
The resulting « values are related to the next set of kinetic parameters as follows:
af =A', 23 =FE", and a3 =n'.
The iterations are continued until the parameters 4, E, and n converge to within rea-
sonable tolerances. When programmed for a digital computer, e.g., the Univac 1108,
the computations are extremely rapid. Data from more than one thermogram may be
utilized. In this case a set of equations, one for each thermogram, of the form of
Eqn. (11) are solved, and the objective function in Eqn. (20) is expanded to include all
data sets.
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Convergence of the quasilinearization technique given above is the major dif-
ficulty in its application. Realizing that a good initial guess of the values of the con-
stants is necessary for convergence, we have used crude graphical methods to yield
preliminary values. Probability of convergence is also enhanced if one of the para-
meters is constrained until the others have reached an optimized value. The concept
of constrained parameters permits a variety of calculation strategies, each of which
should converge to the same result. Of course, the required computer time can vary
significantly, depending upon the strategy chosen.

Many of the problems associated with convergence in non-linear curve fitting
can be reduced through reparameterization. Several different techniques of repara-
meterization have been published®-?, and Kittrell® has discussed their application to
kinetic analysis. Specifically in the case of a simple Arrhenius model

k= Ae ERT (26)

estimation of the two parameters from experimental data may yield a contour of
convergence on a sum-of-squares surface which is very restricted. Convergence of an
iterative routine for such a system may be slow or nonexistent. Experience seems to
indicate that kinetic models shculd be reparameterized by a redefinition of the inde-
pendent variables. Specifically, Kittrell recommends that the exponential parameter
k= A e HRT pe redefined as

L — 4 e ERUT-1T) X))
where

A= Ae ERT (28)
We have taken the value of T as the temperature at the point of maximum rate of
weight loss.

These modifications, which are mathematically equivalent to the original expres-
sion, transform the contour of convergence. Parameters 4 and E are obtained more
readily, initial estimates are less critical, and convergence is more rapid. The applica-
tion of this form of reparameterization to the quasilinearization equations is straight-
forward. )

It is occasionally obvious from inspection of a thermogram that more than a
single weight-loss mechanism is occurring. The extension of the quasilinearization
technique to a two-mode model illustrates in general the procedure for handling mul-
tiple modes.

It has been assumed frequentiy that the tcial weight loss of a sample is the sum
of two independent parallel reaction mechanisms, each associated with a fraction of
the original sample weight®. Thus,

—dwh'l — _'dn;ln-1 + —C“Vz"_l - (’Vli)n'; Al; e—Ef/RT+

dt dt dt

(W3)2 A} e EUIRT (29)
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w—w, Wy — W,y - Wy—Ue
’Wl ="——"—', ;12-:"—_“—',

Wo Wo,1 Wq,2

where W =

and w+w., = w, wy,; +wy,, = Wy

In this case the approach is to determine independently the particular and homo-
geneous solutions of each mode and consequently ¥ ,(¢) and W,(7). Using the defining
equations, v, and w, are calculated.

Graphical integration of a reaction peak on a plot of rate-of-weight-loss
vs. temperature yields values of ww, ;. In order to obtain values £ w;, an assumption
is usually made as to the value of w, ;. Generally it is assumead that one reaction pro-
duces only gaseous products and the other, therefore, ,?~lds all the char residue.
Using this assumption, or any other justified by experimenta! evidences, values of
w; are calculated. The combination of &, and w, yields w'* !(¢), which is used in the
calculation of the objective function Q. With these modifications the solution proceeds
as outlined for a single mode.

APPLICATION OF THE QUASILINEARIZATION

Experimental TG data were obtained for a phenyl-substituted poly-quinoxaline
polymer using a Cahn RG Electrobalance. The polymer was prepared by Wrasidlo
and Augl of the U.S. Naval Ordnance Laboratory by one-step solution condensation
of 3,3’-diaminobenzidine with 1,5-bis(phenylglyoxaloyl)benzene at room tempera-
ture. An infrared spectra of the polymer showed no carbonyl band and no residual
NH band, thus indicating complete cyclization to give:

The resin sample as received was a light yellow flocculant powder. TG data were
obtained on the polymer as received with no prior resin advancement.

A dynamic thermogram obtained with a non-flow helium atmosphere is shown
in Fig. 1. The temperature-rise-rate employed in this test was 10°C/min. Numerical
differentiation of discretized data produced the rate-of-weight-loss curve shown in
Fig. 2. The appearance of two reaction peaks, which are reasonably separated, presen-
ted a good opportunity to test the application of the quasilinearization method to a
two-mode model as described by Eqn. (29).

Sevzeral computational strategies using the quasilinearization method were
tried before convergence was obtained in the iterative calculations, leading to optimal
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Fig. I. Dynamic thermogram for polyquinoxaline at 10°C/min ir non-flowing helium.
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Fig. 2. Rate of weight loss for polyquinoxaline in non-flowing helium.

values of the kinetic parameters. As a first attempt, graphically obtained values of
kinetic parameters were used as the initial approximations in an unrestrained calcul-
ation. This calculation failed to be sufficiently stable to permit convergence, apparently
because of the very sensitive interaction between the two reaction modes.

As a second trial, it was attempted to optimize the parameters of the second
peak with those of the first peak, with the order of reaction cf the second, 7,, held
constant at an assumed constrained value. The reverse calculation was also tried
kolding n, constant. While these approaches did lead to some convergent values
the sensitivity of interaction between the parameters made optimization of the com-
bined modes very Iaborious.

The third and best approach tried was to optimize first the kinetic parameters
of the first reaction peak using only data taken before the second reaction peak became
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activated. However, it was necessary to constrain n, during these calculations.
Graphical values of n; had been obtained which varied from 1.6 to 2.0. Computer
calculations using the quasilinearization method were carried out for various con-
strained values of »,. The resulting optimal values of 4, and E, are shown in Table 1.

TABLE I

CONVERGENT KINETIC PARAMETERS FOR THE FIRST REACTION
PEAK OF POLYQUINOXALINE

Consitrained A, (sec™ 1) E, (cal) Sum of least squuares
ny

1.0 7.050 % 10° 46,627 0.1328%x 10 1*

1.6 2.680x 1013 58,369 0.6686x 10— 2

1.7 1.102 %< 101¢ 60,394 0.5973x10-2

1.9 1.929 x 101% 64,502 0.4787x 102

2.0 8.212x 1015 66,585 0.4299x10"2

30 2.980 <1022 88,445 0.1956x 102

The least squares fit of the data shown in Table I seem to justify use of an n
even larger than 3.0. However, the convergent parameters for an n of 3.0 seemed to
predict a greater weight loss near the end of the first reaction than that actually obser-
ved.

Having now an indication of the magnitude of the parameters for the first
peak, values of n,, 4, and E, for the second peak were sought while the parameters
for the first were held constant. Combinations of », and n, were tried with the result
that 2, was found to be near 2.0. Values of 71, either greater or less than 2.0 seemed
to lead to poor agreement with the data.

O3+ .
n, = 1.9
\’-'10.2!- ny = 2.0 -~
]
O
o}

Temperature, °C

Fig. 3. A comparison of data and numerically optimized results for polyquinoxaline.
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As a final step in applying the two-mode model, both reaction peaks were optim-
ized simultaneously. In this case it was still necessary to constrain the values of 7,
and n1,. The resulits of several combinations are presented in Table 1I to illustrate the
trends. Values of 3.1 for nn, and 2.0 for n, appeared to give the best fit of the data.
Fig. 3 illustrates a comparison of data and computed points from optimized
kinetic parameters for n; = 1.9 and n, = 2.0. Fig. 4 shows a similar plotforn; = 3.0
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Fig. 4. A comparison of data and numerically optimized results for polyquinoxaline.

and n, = 2.0. As can be seen in Fig. 4, the parameters determined by quasilineariza-
tion describe the complex dynamic reaction curve very well. The fit of the parameters
shown in Fig. 3 is obviously inferior to that shown in Fig. 4 and yet the over-all
conformity is reasonably good. Such an observation emphasizes the need for accurate
data for use in determining kinetic parameters, since inconsistencies or scatter would
seriously affect the final results.

TABLE 11

CONVERGENT KINETIC PARAMETERS FOR POLYQUINOXALINE PYROLYSIS
ny A (sec ) Ey(cal) »ny Ay (sec™ 1) E; (caD) Sum of least squares
20 1.242x1022 84,049 1.9 7.195x101* 62,109 0.1432x 102

3.0 1.394x10%2 87,232 2.1 1.161x 10!3 66,814 0.1425x 102

2.9 2.574x103! 84,758 2. 3.836x 1012 65,028 0.1523x 102

3.0 1.474x10%*! 87,104 2 1.020x 103 64,445 0.1426x 102

2.1 6.818x1032 89,545 2.0 2.171 x 1012 63,889 0.1353x 102

In all of the quasilinearization calculations discussed above for polyquinoxaline
it was assumed that the material was composed of two parts which reacted indepen-
dently to form both gas and char. It was further assumec that the starting material in
both reactions produced the same fractional char yield as was determined for the
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combined reaction from the dynamic thermogram. Other assumed mechanisms have
been evaluated by Burningham'® using quasilinearization.

CONCLUSION

Mathematical analysis of thermogravimetric data by the technique of quasili-
nearization offers several significant advantages over many commonly employed
methods. Quasilinearization, as developed in this paper, has been successfully applied
to the kinetic analysis of para-polyphenylene, polyquinoxaline and polyimide poly-
mers. Only the polyquinoxaline example is included here. Only a few of the many
possible applications of this powerful technique to the kinetics of polymer decompo-
sition have been explored.
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